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Abstract

In an earlier paper (Part 1), featuring group-theoretical analysis, it was shown that the isotropic EPR spectra of free radical (S = 1/2)
species XLn, where the n equivalent nuclei also have spin 1/2, have a more complicated form than anticipated from the usual (first-order)
oversimplified analysis. The nucleus of X is taken to be spin-less. The latter predicts n + 1 lines with intensity ratios given by the coef-
ficients of the binomial expansion; for systems with n = 3, the EPR spectrum in fact consists of 6 lines. Analogous considerations hold for
NMR spectroscopy of XLn non-radicals. For n P 3 systems, the degeneracy of the energy levels cannot be completely removed by the
Zeeman electronic and nuclear interactions. Explicit solutions for n = 3 (analytic, as well as computational) of the spin-hamiltonian for
the energies and spin states have been obtained and are given in the present work. Discussion of the underlying theory, invoking
exchange degeneracy, is included herein in some detail, focusing on line positions and relative spectral intensities.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

This paper is a continuation of the earlier one [1], in
which we set out the problem, summarized the earlier liter-
ature, discussed various chemical examples (species XLn in
which the ligand nuclei each have spin 1/2), and presented
a primarily group-theoretical analysis. The nucleus of X is
taken to be spin-less. The problem is to quantify and
understand the EPR spectra of free radical (S = 1/2) spe-
cies XLn, and NMR spectra of analogous non-radical mol-
ecules, partly in an attempt at clarification of common
misunderstandings to be found in the literature.
2. General theory

We wish in this work to pay particular attention to the
theory underlying the spin states of a system XLn and their
energies, for arbitrary values of ligand number n. It should
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be noted that herein the system of n magnetically equiva-
lent nuclei, all with spin 1/2, will be treated. This means
that all nuclei within a set L have the same values of hyper-
fine coupling parameters A and effective nuclear g-factors
gn. Such equivalence can arise naturally from the symmetry
of the molecule or through effective symmetry achieved by
rapid internal motion.

Once again placing special emphasis on n = 3, keeping in
mind the relevant energy-level scheme E(B) (Fig. 1, which
has been repeated from Part 1 of this work = [1]) for XL3,
we note some special aspects of the underlying theory:

(1) There exist sets of energies which are degenerate, and
which remain exactly superimposed for all applied
magnetic-field values B.

(2) The B-independent degeneracy arises from the invari-
ance of the spin-hamiltonian with respect to all sets of
pairwise permutations of equivalent nuclei, i.e., it is
the so-called ‘exchange degeneracy’ ([2], p. 391). It
is absent for n = 1 and 2.The spin-hamiltonian matrix
for XL3 can be factored so that exact energy expres-
sions are available (Appendix A).

mailto:john.weil@usask.ca


Fig. 1. The Zeeman energy-level diagram, for the hypothetical isotropic
species XH3 having one unpaired electron (g = 2.0030) and three
equivalent I = 1/2 nuclides, created using spin-hamiltonian [1] without
nuclear exchange terms, and gn for bare nucleus 1H. Hyperfine parameter
A/(gebe) was taken to be +0.500 mT (A/h = 14.0 MHz). (a) B from 0 to
2 mT. The field-independent degeneracies are listed at the right. The
appropriate labels for the states at B = 0 are, in order of increasing energy:
F = 1, 0, 1, 2. (b) 598 6 B 6 600 mT. This shows the relative bunching of
the upper octet of states as compared to the lower octet. At still higher
fields, the two sets become more equally spaced.
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The spin-hamiltonian operator for the XLn system with
one unpaired electron with spin S = 1/2 and n equivalent
nuclei having spin I = 1/2 is given ([3], pp. 121,160; [4]) by

opHs ¼ opHB þ opHhf þ opHn;ssðX;LÞ ð1aÞ

¼ gbeB
T·opS� gnbnBT·

X
i¼1;n

opIi

 !
þ A opST·

X
i
opIi

þ
X
i<j

Jij
opIT

i ·opIj ð1bÞ

Here the symbol n stands for ‘nuclear’, or else the total
number of equivalent nuclei per molecule. The operator
opHB represents the Zeeman interactions of the electron
and also of the nuclear spins, respectively, with the external
magnetic field B k z, opHhf describes the isotropic hyperfine
coupling between the electron and the nuclear spins, and
opHn,ss(X,L) describes the nuclear spin–spin interactions
(to be neglected). Superscript T in Eq. (1b) denotes spatial
matrix transposition.

The nuclear spin–spin coupling parameters are expected
to be much smaller than the electron-spin–nuclear-spin
(hyperfine) coupling parameters. Though such interactions
are present, they will not affect the EPR spectrum of any
XLn system. Generally, the operator for the nuclear spin–
spin interaction can be divided into two types: the coupling
between non-equivalent nuclei opHn,ss(X,L) (for cases when
X also has non-zero nuclear spin) and that between the
equivalent nuclei described by opHn,ss(L). EPR transitions
will be allowed only between states that have the same
eigenvalue of the latter operator, to good approximation.
Thus these coupling interactions basically have ‘no’ EPR
spectroscopic effect.

The analogous problem has been considered in detail in
NMR spectroscopy ([5], Ch. 6, pp.103–164; [6], pp. 172–
258), where it is widely known that the spectrum of a system
of nuclear spins that include a set of magnetically equivalent
nuclei is independent of the spin coupling between nuclei
within that set. A proof of this statement is available [7].

Similar considerations can be applied here for EPR. To
good approximation, the EPR transitions are allowed only
between states that give non-zero matrix elements of the
EPR transition-moment operator oplx (excitation magnetic
field along x). Since the operators of the nuclear spin–spin
interactions commute with the electron spin operator opSx,
i.e., [opHn,ss(X,L), opSx] = 0, the matrix element
(oplx)pq 6¼ 0 for any two states /p and /q only when
(opHn,ss)p = (opHn,ss)q. Therefore there is no change in the
energy of nuclear spin–spin interaction during an allowed
EPR transition, and such an interaction does not affect
the EPR spectrum of the XLn system. So, the last term in
spin-hamiltonian (Eqs. (1)) can usually be omitted, which
simplifies further the consideration of such systems.

If the system contains n equivalent nuclei, all having
spin I = 1/2, there will be a total of 2n possible nuclear–spin
eigenstates. Calculation of the energies and the eigenstates
of spin-hamiltonian (Eqs. (1)) is feasible if the representa-
tion is chosen such that the nuclear spins occur coupled
to form total nuclear spin

P
iIi. In [8], it was shown that

such a representation allows calculation of the EPR spec-
trum of a system with a set of n equivalent nuclei without
explicit consideration of the 2n nuclear-spin functions and,
utilizing second-order perturbation theory for the hyperfine
interactions, some features of the experimentally observed
EPR spectra were explained. However, for explanation of
many of the peculiarities of the EPR spectra of such sys-
tems, exact solution of spin-hamiltonian (Eqs. (1)) is desir-
able and, as discussed in Part 1 [1], this problem can be
solved exactly for any n.

In the XLn systems of interest herein, there are
(2S + 1)(2I + 1)n spin states. The spin-hamiltonian opera-
tor matrix will have dimension d � 2n+1 � 2n+1. Matrix



S.M. Nokhrin et al. / Journal of Magnetic Resonance 193 (2008) 1–9 3
HB will have only diagonal elements, whereas Hhf may have
non-zero off-diagonal elements. The solutions of the corre-
sponding secular equation are the energy levels, and the cor-
rect state ‘functions’ are the linear combinations of the basic
product ‘functions’ (bras and kets W), which diagonalize Hs.
The secular equation can be factored into equations of
order lower than d if we utilize the basic product functions
classified according to the values of the total spin angular
momentum projection quantum number Fz (alias MF, the
projection being along the total spin direction zF) and by
choosing as basis functions linear combinations of product
kets that transform according to the appropriate symmetry
group. All the basic ‘functions’ are eigenkets of operator
opFz, and each corresponds to a definite value of Fz. This
classification allows one to simplify the secular equation
since there are no off-diagonal elements of the spin-hamilto-
nian [1] between basic product kets that correspond to dif-
ferent values of Fz. The latter statement can be proved:
Taking |Wii and |Wji as basic product kets that correspond
to different values of Fz, one has:

hWijHsFzjWji ¼ ðFzÞjhWijHsjWji; ð2aÞ
hWijFzHsjWji ¼ ðFzÞihWijHsjWji: ð2bÞ

Since opFz commutes with opHhf and consequently with the
total spin-hamiltonian opHs, the left-hand side of these
equations must be equal, so it follows that hWi |Hs|Wji = 0,
when (Fz)i 6¼ (Fz)j. This is also easily demonstrated using
group theory.

The spin-hamiltonian for the XLn system must remain
unchanged under any permutation of equivalent nuclei.
Then each of the individual state functions or sets of degen-
erate functions must transform in the same way, as one of the
symmetry species (irreducible representations) of the appro-
priate permutation group. Hence states which belong to dif-
ferent symmetry species cannot ‘interact’ with one another.

To build appropriate state functions, we first can con-
sider the nuclear spin parts alone, as follows.

We have seen in Part 1 of this work [1] that, for XL3, the
three product functions with MI = +1/2 can be combined
to give one linear combination in the completely symmetric
species A1 and one degenerate pair in species E. The actual
linear combinations can be constructed using the formula

Wa ¼ g
X

P¼1; ... ; np

va
P P þ1=2Wð0Þ ð3Þ

([9], pp. 111–113; [10], p. 336), where the sum goes over all
the operations of the permutation group at hand (np = 6
for XL3). Here Wa is the desired symmetry combination
of the species, g is the normalizing factor, and va

P is the
character for the particular permutation P of the symmetry
species. The generator function +1/2W(0) is any one appro-
priate nuclear product ket. Here the pre-superscript is the
total MI. Thus, utilizing XL3 as example, one has:

(a) Taking +1/2W(0) � |�+ +i, we obtain the Wa combi-
nations for MI = +1/2:
þ1=2jA1i ¼ ð1=
p

3Þðjþþ�i þ jþ�þi þ j�þþiÞ; ð4aÞ
þ1=2jE1i ¼ ð1=

p
6Þðjþþ�i þ jþ�þi � 2j�þþiÞ: ð4bÞ

To obtain the state function:

þ1=2jE2i ¼ ð1=
p

2Þðj þþ�i � j þ�þiÞ; ð4cÞ
one can use the product function |+�+ i as +1/2W(0).
(b) The nuclear spin state functions for MI = �1/2 can
be obtained in complete analogy with the above der-
ivation of the functions for MI = +1/2, and one
arrives at:
�1=2jA1i ¼ ð1=
p

3Þðj þ��i þ j �þ�i þ j ��þiÞ;
ð5aÞ

�1=2jE1i ¼ ð1=
p

6Þð2j þ��i � j �þ�i � j ��þiÞ;
ð5bÞ

�1=2jE2i ¼ ð1=
p

2Þðj �þ�i � j ��þiÞ: ð5cÞ
(c) For MI = +3/2, there is only one function:

þ3=2jA1i ¼ j þþþi: ð6Þ
(d) For MI = �3/2, there again is only one function:

�3=2jA1i ¼ j ���i: ð7Þ

Finally, to obtain the total spin product state functions
of the system, one must supply the electron spin part for
these functions, taken simply as products.

The spin-hamiltonian matrix expressed in this basis is
seen to have a particularly simple form, since non-zero
matrix elements occur only between:

(a) states with the same eigenvalue Fz. The latter remains
a good quantum number at all fields B;

(b) states which belong to the same symmetry representa-
tion. Note that when state functions are members of a
degenerate (E) set but are orthogonal, the matrix ele-
ment of opHs between them will be zero.

The spin-hamiltonian matrix for system XL3 with these
properly chosen functions, as shown in Appendix A, is fac-
tored into 1 � 1 and 2 � 2 matrices, and hence this problem
can be easily solved exactly. The energy levels and eigenstates
are given in Appendix A. Since operators opF2, opFz, and all
permutation operators commute with spin-hamiltonian
operator opHs the state kets (or bras) can be chosen to be
simultaneous eigenkets of all these operators, and these
‘functions’ are classified (see Appendix A) by quantum num-
bers F, Fz and according to the irreducible representation of
the symmetry group to which they belong.

For simplicity, we shall focus in what follows on transi-
tions in which |DFz| = 1 and in which the nuclei don’t flip
relative to each other (i.e., no difference in the irreducible
representations of the two states involved). We’ll deal pri-
marily with EPR, and shall herein ignore all mixed EPR–
NMR transitions (transitions with DMS = ±1, DMI 6¼ 0).
Also, we shall not explicitly deal with pure NMR spectra.
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Let us consider the transition energies and relative inten-
sities of the EPR spectra of the XL3 system. As was already
mentioned, the magnetic dipole transitions are allowed
only between states, which give non-zero matrix elements
of the (electronic & nuclear) transition-moment operator

oplx ¼ gbe
opSx � gnbnRi

opIxi:

The magnetic excitation is taken herein with field B1 to be
? B, but the details will not be discussed [Consult [3]; Pro-
gram EPR–NMR [11] does evaluate these elements]. The
non-zero matrix elements of oplx occur only between states
which belong to the same symmetry and for which
DMF = ±1, (these two statements are the selection rules
for the magnetic dipole transitions for such systems). For
pure EPR, this becomes DMS = ±1.

It will prove convenient for analysis of the combination
kets and the relative intensities to define, in Appendix A, a
set of 4 auxiliary angles n = d1, d2, g1, g2, which is useful in
writing the mixing coefficients. We also define convenient
parameters Y � gbeB/2, and Z � gnbnB/2. All 4 angles are
specified by parameters = A, Y and Z, and thus are inter-
related. At the limit B = 0, tan(2d1) = �tan(2d2) = ±31/2,
tan(2g1) and tan(2g2) = ±1; furthermore, as B ?1,
tan(2n) ? 0.

At B = 0, the energy levels occur at 3A/4, A/4, �3A/4
and �5A/4. The situation for A > 0 is shown for XH3 in
Fig. 1a. The diagram obviously becomes upside-down for
A < 0, but no spectral changes will occur in that case. At
higher B fields, with A > 0, the upper octet of states tends
Table 1
The six distinct setsa of major transitions for fixed-frequency |DFz| = 1 EPR [see
increasing transition energies @ fixed magnetic field (i.e., decreasing resonance
from the mixing coefficients

Transitionb,c Transition energy DE

/1 M /9 Y � A + {(Y + Z � A/2)2

j2, �1, A1i M j2, �2, A1i

/3,4 M /10,11 Y � A/2 + {(Y + Z)2 + (A
j1, 0, E1,2iM j1, �1, E1,2i

/2 M /12 {(Y + Z)2 + A2}1/2 + {(Y +
j2, 0, A1iM j1, �1, A1i

/6,7 M /13,14 Y + A/2 + {(Y + Z)2 + (A
j1, +1, E1,2iM j0, 0, E1,2i

/5 M /15 {(Y + Z)2 + A2}1/2 + {(Y +
j2, +1, A1iM j1, 0, A1i

/8 M /16 Y + A + {(Y + Z + A/2)2 +
j2, +2, A1iM j1, +1, A1i

The 16 energy eigenkets /i are defined in Appendix A, and Y � gbeB/2, Z � gnb
and are functions of A, Y and Z.

a The kets in column 1 are labeled with: zero-field F, MF, irreducible represent
All square-root quantities {}1/2 are to be taken as non-negative.

b The labels on kets /j (j = 1, 2, . . . , 16) refer to the states in the highest B-fie
the negative-energy states (when Y� Z > 0).

c Note the different meanings within the set of symbols A1, as well as of E1

column 1st row item should actually read j2;�1;Aiv
1 i $ j2;�2; �3=2A1i.

d The factor
p

2 in the 3rd column indicates that there are two degenerate t
e For the angle set n = d1, d2, g1, g2: At B = 0, ±cos(n) is 31/2/2, 1/2, 1/21/

cos(n) = 1, sin(n) = 0.
to bunch as compared to the lower one (see Fig. 1b), as a
result of the respective destructive and constructive inter-
ference effects of the hyperfine and nuclear Zeeman terms.

Using the calculated eigenenergies and eigenstates for the
XL3 system, the EPR transition energies and relative intensi-
ties can be calculated. All the transitions considered herein
occur between irreducible nuclear representations identical
for both states involved. Details of the usual 8 main EPR
transitions are presented in Table 1. However, as will be
shown below, not only the line positions but also the number
of resonance lines will be quite different at different ratios
between the magnitude of the hyperfine coupling A and the
Zeeman energy. We can discuss distinct cases.

Table 1 shows that, at B = 0, all 8 ‘main’ EPR transi-
tions vanish in intensity. However, we see from Table 2
that here there are 8 other transitions with non-zero inten-
sity factors. Fig. 2 presents a frequency-swept spectrum
depicting this situation.

We consider next the case of the strong B-field, sufficiently
so that the Zeeman electron energy and thus the required
photon energy is much larger than the hyperfine interaction:
hm� |A| and |A|� |Z|, which is a common case. This field is
to be greater than any field at which an energy-level crossing
occurs. This has been until now the usual experimental case.
Note the energy-level diagram of the XL3 system (Figs 1a
and 1b, and Fig. 2 of Part 1 = [1] of this work). The spin
states, labeled 1, . . . , 16 in descending energy order (see
Appendix B), in the high B-field region as defined above,
and with Y� Z > 0, are:
Fig. 2 of Part 1], of an S = 1/2 molecular species XL3, listed in the order of
fields B @ fixed frequency), including the relative intensity factors arising

Intensity factord,e

+ (3/4)A2}1/2 � Z cosd2

/2)2}1/2 � Z
p

2 cosg2

Z � A/2)2 + (3/4)A2}1/2 � 2Z cosd2 cosg1

/2)2}1/2 � Z
p

2 cosg2

Z + A/2)2 + (3/4)A2}1/2 � 2Z cosd1 cosg1

(3/4)A2}1/2 � Z cosd1

nB/2. Angles d1, d2, g1, g2 occurring in column 3 are defined in Appendix A,

ation of permutation group P3. Notation /a, b M /c,d denotes 2 transitions.

ld region, j = 1–8 denoting the states with positive energy, and j = 9–16 to

and E2, in the two kets given in column 1: see Appendix A. Thus the 1st

ransitions superimposed.
2, 1/21/2, while sin(n) is 1/2, 31/2/2, 1/21/2, 1/21/2. In the limit as B ?1,
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The kets in the 2nd columns of the kets are labeled with:
zero-field F, MF, and the symbol for the irreducible repre-
sentation of the permutation group P3. Of course, there are
actually eight representations A1, which must be kept dis-
tinct for our purposes, say by labeling with superscripts i,
ii, . . . , as defined in Appendix A. Similarly, E1 and E2 need
labeling into distinct pairs. With opposite signs of Y and Z,
the energy ordering differs.

Calculated transition energies and relative intensities for
the main EPR lines are given in Table 1. All these transi-
tions go to maximum intensity factors as B ?1 (unity
when A is finite). The theory shows that the EPR spectrum
consists of 8 transitions, and can exhibit 6 distinct lines
instead of only 4 lines with intensity ratios 1:3:3:1 as usu-
ally described. It follows from the results given in Table 1
that the splitting into line pairs (and each intensity factor)
is strongly dependent on the ratio between the magnitude
of the hyperfine coupling and the Zeeman energy.
Table 2
The 10 distinct setsa of fixed-frequency jDFz| = 1 transitions [other than the ma
including the relative intensity factors arising from the mixing coefficients

No. Transitionb,c Transition energy

(1) /5 M /8 �Y � A + {(Y +
|2, +1, A1iM |2, +2, A1i

(2) /2 M /5 {(Y + Z)2 + A2}1/2

|2, 0, A1iM |2, +1, A1i

(3) /1 M /2 {(Y + Z)2 + A2}1/2

|2, �1, A1iM |2, 0, A1i

(4) /3,4 M /6,7 �Y + A/2 + {(Y +
|1, 0, E1,2iM |1, +1, E1,2i

(5) /12 M /15 {(Y + Z)2 + A2}1/2

|1, �1, A1iM |1, 0, A1i

(6) /15 M /16 �{(Y + Z)2 + A2}
|1, 0, A1iM |1, +1, A1i

(7) /10,11 M /13,14 �Y + A/2 + {(Y +
|1, �1, E1,2iM |0, 0, E1,2i

(8) /9 M /12 �Y + A + {(Y + Z

|2, �2, A1iM |1, �1, A1i

(9) /1 M /15 �{(Y + Z)2 + A2}
|2, �1, A1iM |1, 0, A1i

(10) /2 M /16 �{(Y + Z)2 + A2}
|2, 0, A1iM |1, +1, A1i

The 16 energy eigenkets /i are defined in Appendix A, and Y � gbeB/2, Z � gnb
and are functions of A, Y and Z.

a The kets in column 1 are labeled with: zero-field F, MF, irreducible represen
All square-root quantities {}1/2 are to be taken as non-negative.

b The labels on kets /j (j = 1, 2, . . . , 16) refer to the states in the highest B-fie
the negative-energy states (when Y� Z > 0).

c Note the different meanings within the set of symbols A1, as well as of E1
d The factor

p
2 in the 3rd column indicates that there are two degenerate t

e For the angle set n = d1, d2, g1, g2: At B = 0, ±cos(n) is 31/2/2, 1/2, 1/21/

cos(n) = 1, sin(n) = 0.
In the region of increasingly strong applied magnetic
fields B, this splitting into pairs can be approximated with
the value 7A2/(4gbeB), and hence such splitting may be
observed when either the hyperfine coupling is sufficiently
large and/or the magnetic field is relatively small. For
example, this splitting was experimentally observed in the
EPR spectrum of the CF3 radical (g = 2.0032) [12],
for which the isotropic hyperfine coupling A/(gebe) =
14.05 mT is large enough to observe such splitting even
at X-band. As shown in Fig. 3 (also Fig. 2 of [12]), there
are 2 pairs of lines spanning the middle instead of 2 equally
intense lines. However, in many cases, the hyperfine cou-
pling A is not large enough or when spectrum is measured
at higher frequency, this splitting is not usually resolved,
but shows up as affecting the effective relative intensities
of the EPR peaks (see Fig. 4). As one can see from Table
1, the relative intensities of these lines are also dependent
on the ratio |A|/(hm) and are more sensitive to this ratio
jor EPR transitions listed in Table 1] of an S = 1/2 molecular species XL3,

DE Intensity factord,e

Z + A/2)2 + (3/4)A2}1/2 + Z sind1

� {(Y + Z + A/2)2 + (3/4)A2}1/2 + 2Z cosd1 sing1

+ {(Y + Z � A/2)2 + (3/4)A2}1/2 + 2Z sind2 cosg1

Z)2 + (A/2)2}1/2 + 2Z �p2 sing2

� {(Y + Z � A/2)2 +(3/4)A2}1/2 + 2Z �cosd2 sing1

1/2 + {(Y + Z � A/2)2 + (3/4)A2}1/2 + 2Z �sin d1 cosg1

Z)2 + (A/2)2}1/2 + Z
p

2 sing2

� A/2)2 + (3/4)A2}1/2 + Z �sind2

1/2 + {(Y + Z + A/2)2 + (3/4)A2}1/2 + 2Z �sind2 sing1

1/2 + {(Y + Z + A/2)2 + (3/4)A2}1/2 + 2Z �sind1 sing1

nB/2. Angles d1, d2, g1, g2 occurring in column 3 are defined in Appendix A,

tation of permutation group P3. Notation /a,b M /c,d implies 2 transitions.

ld region, j = 1–8 denoting the states with positive energy, and j = 9–16 to

and E2, in the two kets given in column 1: see Appendix A.
ransitions, superimposed.
2, 1/21/2, while sin(n) is 1/2, 31/2/2, 1/21/2, 1/21/2. In the limit as B ?1,



Fig. 3. The first-derivative field-swept EPR spectrum, for a molecular
group XF3, as produced by computer program EPR–NMR [11], for
frequency 9.40 GHz (X-Band). The parameters g = 2.0030 and
A/(gebe) = +15.0 mT (large!) were utilized, with individual lines taken to
be lorentzians each with max–min width of 0.050 mT.

Fig. 4. The first-derivative field-swept EPR spectra, for a species XH3, as
produced by computer program EPR–NMR [11], for various frequencies
(in GHz): (a) 0.940 (L-Band), (b) 94.0 (W-Band), (c) 9.15 (X-Band), and
(d) 9.40 (X-Band). The parameters g = 2.0030 and A/(gebe) = +0.500 mT
were utilized, with individual lines taken to be lorentzians each with max–
min width of 0.050 mT. The transitions at X-band, listed in order of
increasing B field, are: 8–16, 5–15, (6, 7–13, 14), 2–12, (3, 4–10, 11), 1–9.
Note the subtle intrinsic effects (which are real!) affecting the inner lines:
compare X-band spectra (c) and (d).

Fig. 5. The first-derivative field-swept EPR spectrum, for a species XH3, as
produced by computer program EPR–NMR [11], for the ‘low’ frequency
10.0 MHz. The parameters g = 2.0030 and A/(gebe) = +0.500 mT were
utilized, with individual lines taken to be lorentzians each with max–min
width of 0.20 mT. The two EPR lines visible, appearing at 0.5038 (4-fold
degenerate: {3, 4, 10, 11}) and at 0.7982 mT {8 M 9} [high-field state
labels] are the only ones that match the available energy spacings (as per
Fig. 1a), and have appreciable intensity.

Fig. 2. The frequency-swept EPR spectrum, for a molecular group XF3,
as produced by computer program EPR–NMR [11], for zero external
magnetic field B. The parameter A/h = 42.0 MHz (A/(gebe) = +1.500 mT)
was utilized, with individual lines taken to be lorentzians each with full
width at half-height of 0.10 MHz. The three major lines, occurring at 0,
A/h and 2 A/h, are of course multiply degenerate (see Tables 1 and 2).
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than the splitting into pairs. Further work on the frequency
dependence of the intensities of the various lines appearing
in the field-swept spectra is being undertaken by us.

It is worthwhile to notice that various energy-level cross-
ings occur when the Zeeman electronic energy gbeB � |A|/2
(for example, see Fig. 1a at B � 0.3 mT). One can of course
solve for the crossing fields Bx(A) by setting up equalities
between the appropriate energy relations found in Tables
1 and 2. The energy levels that become coincident belong
to different symmetry species; there are no anti-crossings
of levels. The crossings do not affect the spectra themselves.

An EPR spectrum for a molecular species XH3, with
A/(gebe) = 0.5 mT (a typical value), simulated for the rela-
tively low excitation frequency of 10.0 MHz, shows that
only two lines (Fig. 5) with appreciable intensity are pre-
dicted, both occurring in the energy-level crossing region.
The same situation is true with A/(gebe) = 5.0 mT at
100 MHz, except that the two lines occur at fields higher
by a factor of 10 and with greater intensity.
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Note from the present theory that there also are 12 pure
|DFz| = 1 transitions that vanish in intensity when field
B ?1, as listed in Table 2. These transitions considered
‘‘forbidden” in the high magnetic-field region, where states
can be characterized by MS and MI with high accuracy,
appear as result of strong admixture of states with different
(MS, MI) due to the off-diagonal terms in the spin-hamilto-
nian. So these transitions are expected to occur in the low
magnetic-field region, where the electronic Zeeman energy
has values of the same magnitude as that of hyperfine inter-
action (gbeB � |A|).

Hence Tables 1 and 2 indicate that there are at most
8 + 12 = 20 transitions of the type |DFz| = 1, which can in
principle be observed. Note that transitions (1)–(6) in Table
2 can be observed only when transition energy hm is smaller
than ca. |A|/2. Such an energy quantum is sufficient to
induce all transitions with DF = 0 and |DFz| = 1; these are
(1)–(6) from Table 2, transitions u8 M u9 and
u3,4 M u10,11 (see Fig. 5) listed in Table 1. Transitions (8)
and (10) in Table 2 can be observed when hm is larger than
2|A|, and transitions (7) and (9) can be observed when hm is
smaller than |A|, but larger than ca. |A|/2. These transitions
are very weak NMR transitions arising via the mixing of
the two MS states within some of the spin kets (see next
paper in the present series).

The smallest transition energy required for 5 of these
transitions is 2|A|, as may be deduced from Table 1. Then,
in the energy range |A| < hm < 2|A|, the energy quantum is
not sufficient to induce all the pure EPR transitions, despite
their non-zero intensity factors. In this case, only the 3 out
of the 8 transitions described above for the strong-field case
will be observable (Fig. 5). Similar considerations hold for
the other |DFz| = 1 transitions, listed in Table 2. For the lat-
ter, most of the transitions feature appreciable dependence
on the nuclear Zeeman transition energy 2Z = gnbnB.

In the present work, we are concerned with the various
magnetic transitions induced when the excitation magnetic
field B1 is perpendicular to the Zeeman field B. We do wish
to mention that parallel-field magnetic resonance (B1 k B)
too occurs [13], with interesting aspects even for isotropic
systems, but this topic will not be covered herein.

3. Conclusions

We have investigated in some detail the theory under-
lying the energy-level schemes of chemical entities XLn

having equivalent ligands, and have clarified the nature
of certain effects found in their magnetic-resonance spec-
tra, which cause complications spoiling the commonly
expected simplicity of such spectra. Exact solutions for
the spin-hamiltonian energies, as well as expressions for
the EPR transition energies and spectral relative intensi-
ties, have been given herein for molecules XL3. This
includes discussion of the unusual set of EPR lines
caused by hyperfine-induced mixing of the spin states.
Some subtle intrinsic effects of the unresolved splitting
of the middle lines, comparing X-band spectra, are dem-
onstrated, as are non-standard effects observable to low
magnetic fields and at low excitation frequencies. It is
expected that some of the phenomena described herein
will be seen in the spectral lines coming from outer
space, i.e., derived from the burgeoning field of astro-
EPR.
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Appendix A. The spin-hamiltonian and its solution for

species XL3

The energy matrix built on all (2S + 1)(2I + 1)n spin
states is a 16 � 16 matrix. This matrix can be factorized
into two 1 � 1, two 4 � 4 and one 6 � 6 matrices.

For convenience, let us define electron and nucleus Zee-
man-energy symbols Y � gbeB/2 and Z � gnbnB/2. The
labels on the energies Ej and state kets /j are j = 1, . . . ,16

in order of decreasing energies as they occur in the highest
B-field region, taking Y and Z to be positive, and assuming
Y� Z. The labels then are independent of A.

We define four angles n(g,gn,A,B) = d1, d2, g1, g2 useful
in writing the ket mixing coefficients (see below). They
may be obtained by obtaining the various sets of eigenkets
from the four distinct non-diagonal 2 � 2 secular submatri-
ces given below. The sign of each cosn sinn is relevant
but not the signs of the individual trig functions, since
the signs of the combination kets have no physical mean-
ing, and the transition intensities go as the squares of the
intensity factors listed in Tables 1 and 2 (Columns 4).
The angles obey the relations:

tan 2d1 ¼ ð
p

3A=2Þ=ðY þ Z þ A=2Þ;
tan 2d2 ¼ ð

p
3A=2Þ=ðY þ Z ��A=2Þ;

tan 2g1 ¼ A=ðY þ ZÞ;
tan 2g2 ¼ ðA=2Þ=ðY þ ZÞ:

Note that tan(2g1) and tan(2g2) have the same sign as A,
for Y + Z > 0.

The first two matrices, 1 � 1, give two states, with total
spin projections (Fz alias MF), energies and eigenkets:

F z ¼ þ2;

E8 ¼ 3A=4þ Y � 3Z;

/8 ¼ j2;þ2; þ3=2A1i ¼ jþ; þ3=2A1i ¼ jþ;þþþi:

F z ¼ �2;

E9 ¼ 3A=4� Y þ 3Z;

/9 ¼ j2;�2; �3=2A1i ¼ j�; �3=2A1i ¼ j�;���i:
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| �, +3/2A1i
 | +, +1/2A1i
 | +, +1/2E1 > i
 | +, +1/2E2i

| �, +3/2A1i
 �3A/4 � Y � 3Zp
p
3A/2
 0
 0
| +, +1/2A1i
 3A/2
 A/4 + Y�Z
 0
 0

| +, +1/2E1i
 0
 0
 A/4+Y�Z
 0

| +, +1/2E2i
 0
 0
 0
 A/4 + Y � Z
The 4 � 4 matrix for states with Fz = �1 is
| +, �3/2A1i
 | �, �1/2A1i
 | �, �1/2E1i
 | �, �1/2E2i

| +, �3/2A1i
 �3A/4 + Y + 3Zp
p
3A/2
 0
 0
| �, �1/2A1i
 3A/2
 A/4 � Y + Z
 0
 0

| �, �1/2E1i
 0
 0
 A/4 � Y + Z
 0

| �, �1/2E2i
 0
 0
 0
 A/4 � Y + Z
The 6 � 6 matrix for states with Fz = 0 is
| �, +1/2A1i
 | +, �1/2A1i
 | �, +1/2E1i
 | +, �1/2E1i
 | �, +1/2E2i
 | +, �1/2E2i

| �, +1/2A1i
 �A/4 � Y � Z
 A
 0
 0
 0
 0

| +, �1/2A1i
 A
 �A/4 + Y + Z
 0
 0
 0
 0

| �, +1/2E1i
 0
 0
 �A/4 � Y � Z
 �A/2
 0
 0

| +, �1/2E1i
 0
 0
 �A/2
 �A/4 + Y + Z
 0
 0

| �, +1/2E2i
 0
 0
 0
 0
 �A/4 � Y � Z
 �A/2

| +, �1/2E2i
 0
 0
 0
 0
 �A/2
 �A/4 + Y + Z
The 3rd matrix gives four solutions (1 pair degenerate)
for states with Fz = +1:

E5 ¼ �A=4� 2Z þ fðY þ Z þ A=2Þ2 þ ð3=4ÞA2g1=2
;

¼ �A=4� 2Z þ ðY þ Z þ A=2Þ= cosð2d1Þ;
/5 ¼ j2;þ1;Ai

1 >¼ sin d1j�; þ3=2A1i þ cos d1jþ; þ1=2A1i:

E6 ¼ E7 ¼ A=4þ Y � Z;

/6 ¼ j1;þ1; þ1=2E1i
¼ ð1=p6Þð2jþ;�þþi � jþ;þ�þi � jþ;þþ�iÞ;

/7 ¼ j1;þ1; þ1=2E2i ¼ ð1=
p

2Þðjþ;þ�þi � jþ;þþ�iÞ:

E16 ¼ �A=4� 2Z � fðY þ Z þ A=2Þ2 þ ð3=4ÞA2g1=2

¼ �A=4� 2Z � ðY þ Z þ A=2Þ= cosð2d1Þ;
/16 ¼ j1;þ1;Aii

1 >¼ cos d1j�; þ3=2A1i � � sin d1jþ; þ1=2A1i:
Solution of the 4th matrix gives 4 energy states (1 pair
degenerate) for states with F z ¼ �1 :

E1 ¼ �A=4þ 2Z þ fðY þ Z � A=2Þ2 þ ð3=4ÞA2g1=2
;

¼ �A=4þ 2Z þ ðY þ Z � A=2Þ= cosð2d2Þ;
/1 ¼ j2;�1;Aiii

1 i ¼ cos d2jþ; �3=2A1i þ sin d2j�; �1=2A1i:
E10 ¼ E11 ¼ A=4� Y þ Z;

/10 ¼ j1;�1; �1=2E1i ¼ j�; �1=2E1i
¼ ð1=p6Þð2j�;þ��i � j�;�þ�i � j�;��þiÞ;

/11 ¼ j1;�1; �1=2E2i ¼ j�; �1=2E2i
¼ ð1=p2Þðj�;�þ�i � j�;��þiÞ:

E12 ¼ �A=4þ 2Z � fðY þ Z � A=2Þ2 þ ð3=4ÞA2g1=2

¼ �A=4þ 2Z � ðY þ Z � A=2Þ= cosð2d2Þ;
/12 ¼ j1;�1;Aiv

1 i ¼ cos d2j�; �1=2A1i � sin d2jþ; �3=2A1i:
The 5th matrix (6 � 6) gives 6 states (2 pairs degenerate)
with Fz = 0:

E2 ¼ �A=4þ fðY þ ZÞ2 þ A2g1=2

¼ �A=4þ ðY þ ZÞ= cosð2g1Þ;

/2 ¼ j2; 0;Av
1i ¼ cos g1jþ; �1=2A1i þ sin g1j�; þ1=2A1ig:

E3 ¼ E4 ¼ �A=4þ fðY þ ZÞ2 þ ðA=2Þ2g1=2

¼ �A=4þ ðY þ ZÞ= cosð2g2Þ;

/3 ¼ j1; 0;Ei
1i ¼ cos g2jþ; �1=2E1i � sin g2j�; þ1=2E1i;

/4 ¼ j1; 0;Ei
2i ¼ cos g2jþ; �1=2E2i � sin g2j�; þ1=2E2i:
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E13 ¼ E14 ¼ �A=4� fðY þ ZÞ2 þ ðA=2Þ2g1=2

¼ �A=4� ðY þ ZÞ= cosð2g2Þ;
/13 ¼ j0; 0;Eii

1i ¼ sin g2jþ; �1=2E1i þ cos g2j�; þ1=2E1i;
/14 ¼ j0; 0;Eii

2i ¼ sin g2jþ; �1=2E2i þ cos g2j�; þ1=2E2i:
E15 ¼ �A=4� fðY þ ZÞ2 þ A2g1=2

¼ �A=4� ðY þ ZÞ= cosð2g1Þ;
/15 ¼ j1; 0;Avi

1 i ¼ cos g1j�; þ1=2A1i � sin g1jþ; �1=2A1i:

Note that various of the nuclear-spin kets used above were
defined in the above test.

Appendix B. Cautionary note on ordering

Care must be taken in labeling the spin states and the
transitions, to be arranged in some order. First of all, one
must state whether one is dealing with the manifold of
energy states (Case Ea) or with a set of transitions (Case Eb).

In the Case Ea, one usually refers herein to the order of
energies occurring in (or near) the high magnetic-field limit
(see Fig. 1b, for system XL3). Let us utilize, instead of the
analytic general notation used in the text (see Appendix A),
the more usual notation

EðMS ;MIÞ ¼ gbeBMS þ ðAMS � gnbnBÞMI þ � � � ðB-1Þ
and

hm ¼ DEEPRðMIÞ ðB-2aÞ
¼ gbeBþ AMI þ � � � : ðB-2bÞ

for primary EPR transitions.
Depending on the relative sign(s) of parameters A and gn,

the second right-hand term (see Eq. (B-2a)) may go through
zero as a series of A values is encountered, for some B-value
region (say, for EPR X-band), due to the cancellation of the
hyperfine and nuclear Zeeman terms. At that point, one
subset of energy levels will reverse its order, and hence their
labels; it may be evident from Fig. 2 (system XL3, where
2MI = �3, �1, +1, +3) that this can happen for the upper
octet, switching from 1, 2, � � �, 8 to 8, 7, � � � , 1. With X-band
EPR (say, 9.1 GHz and g = ge), the resonant field is ca.
325 mT, and hence A/(gebe) for protons is ca. 0.99 mT at
this level crossing. Of course, at sufficiently high B fields,
the nuclear-Zeeman term will dominate in Eq. (B-1).

With regard to the energy-level crossings (i.e., level re-
ordering) evident in Fig. 1a, it can easily be shown (taking
Z to be negligible), that these occur as follows:

1) Single crossing @ B � (1/2)jAj/(gebe)
2) Double crossing @ B � (3/4)jAj/(gebe)
3) Triple crossing @ B � (3/2)jAj/(gebe)

and (not shown in Fig. 1a), with Z included, various
crossings:
4) Grand crossing region @ B � MSA/(gnbn) (See Eq.
(B-1)).

Here MS = +1/2 when A/gn > 0. For protons and A/(gebe) =
0.50 mT, this occurs near 165 mT. There are 13 crossings
within the region 163.54–165.05 mT. In terms of the high-
est-field labels 1, 2, {3,4}, 5, {6,7}, 8 for the upper octet
where 1 denotes the highest energy, the scheme at 2 mT
(Fig. 1a) is 8, 1, {6,7}, 2, {3,4}, 5 and then, below these,
the set 9, {10,11}, 12, {13,14}, 15, 16.

Note that, at zero B field, when A > 0, the eigenkets /j

occur in the order (see Fig. 1a; A/(gebe) = 0.50 mT):
j = {8,1,2,5,9}, {{6,7}, {3,4}, {10,11}}, {13,14} and
{12,15,16}, beginning with the highest energy. In the limit
B ?1, one will attain 1, {2,3,4}, {5,6,7}, 8 situated
above the set 9, {10,11,12}, {13,14,15}, 16.

It is obvious that if one is labeling resonant magnetic
fields Bi (say in fixed-frequency EPR), their order will be
just opposite to that of the corresponding frequencies mi

(see Eq. (B-2a)) in fixed-field EPR.
Equal care must be taken when labeling spectral lines by

those who adopt the pernicious habit of using ‘artificial’ g
values to do so.
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